An enhanced antioxidant strategy of astaxanthin encapsulated in ROS-responsive nanoparticles for combating cisplatin-induced ototoxicity.

一种增强抗氧化策略,将虾青素封装在 ROS 响应纳米颗粒中,以对抗顺铂引起的耳毒性

阅读:6
作者:Gu Jiayi, Wang Xueling, Chen Yuming, Xu Ke, Yu Dehong, Wu Hao
BACKGROUND: Excessive accumulation of reactive oxygen species (ROS) has been documented as the crucial cellular mechanism of cisplatin-induced ototoxicity. However, numerous antioxidants have failed in clinical studies partly due to inefficient drug delivery to the cochlea. A drug delivery system is an attractive strategy to overcome this drawback. METHODS AND RESULTS: In the present study, we proposed the combination of antioxidant astaxanthin (ATX) and ROS-responsive/consuming nanoparticles (PPS-NP) to combat cisplatin-induced ototoxicity. ATX-PPS-NP were constructed by the self-assembly of an amphiphilic hyperbranched polyphosphoester containing thioketal units, which scavenged ROS and disintegrate to release the encapsulated ATX. The ROS-sensitivity was confirmed by (1)H nuclear magnetic resonance spectroscopy, transmission electron microscopy and an H(2)O(2) ON/OFF stimulated model. Enhanced release profiles stimulated by H(2)O(2) were verified in artificial perilymph, the HEI-OC1 cell line and guinea pigs. In addition, ATX-PPS-NP efficiently inhibited cisplatin-induced HEI-OC1 cell cytotoxicity and apoptosis compared with ATX or PPS-NP alone, suggesting an enhanced effect of the combination of the natural active compound ATX and ROS-consuming PPS-NP. Moreover, ATX-PPS-NP attenuated outer hair cell losses in cultured organ of Corti. In guinea pigs, NiRe-PPS-NP verified a quick penetration across the round window membrane and ATX-PPS-NP showed protective effect on spiral ganglion neurons, which further attenuated cisplatin-induced moderate hearing loss. Further studies revealed that the protective mechanisms involved decreasing excessive ROS generation, reducing inflammatory chemokine (interleukin-6) release, increasing antioxidant glutathione expression and inhibiting the mitochondrial apoptotic pathway. CONCLUSIONS: Thus, this ROS-responsive nanoparticle encapsulating ATX has favorable potential in the prevention of cisplatin-induced hearing loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。