Neuroprotective Effect of Echinacoside in Subacute Mouse Model of Parkinson's Disease.

紫锥菊苷在帕金森病亚急性小鼠模型中的神经保护作用

阅读:6
作者:Liang Yan, Chen Chang, Xia Baomei, Wu Wei, Tang Juanjuan, Chen Qing, Tang Lili, Yang Hui, Zhang Zhennian, Lu Yan, Yang Ye, Zhao Yang
OBJECTIVE: To study the protective effect of Echinacoside for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced dopaminergic (DA) neurons injury in the subacute mouse model of Parkinson's disease (PD) and to explore its mechanism of action. METHODS: We chose 10 weeks of healthy wild type C57BL/6 male mice, hypodermic MPTP 30 mg/kg/day, five days, to prepare PD subacute mouse model. Behavior indexes of open field test and pole test were applied to examine the function of ECH to PD subacute mice model of PD sample action. The effects of ECH on dopaminergic neurons and astrocyte were examined using Immunohistochemistry including tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) expression. The total numbers of TH-positive neurons and GFAP-positive cells in the substantia nigra pars compacts (SNpc) and ventral tegmental area (VTA) were obtained stereologically using the optical fractionator method. Enzyme-linked immunosorbent assay (ELISA) method was used to detect the inflammatory cytokines in the serum, including TNF-α (Ttumor necrosis factor alpha) and IFN-γ (interferon gamma). Protein expressions of ionized calcium binding adaptor molecule 1 (IBA-1), TNF-α, Cleaved caspase-3, glial derived neurotrophic factor (GDNF), and phosphorylated and total extracellular signal-regulated kinase (p-ERK and ERK) in the anatomical region of substantia nigra (SN) were tested by protein immunoblot method (i.e., Western blotting). RESULTS: ECH reversed the reduction of total distance in open field test in MPTP-induced PD model mice (P < 0.01), shortened the return time and total time of PD subacute model mice in pole test (P < 0.01, P < 0.05), significantly reversed the reduction of TH positive neurons induced by MPTP (P < 0.05), and reduced the activation of astrocytes (P < 0.05). Meanwhile, ECH significantly inhibited the expression of IBA-1, Cleaved caspase-3, and TNF-α in midbrain of MPTP model mice (P < 0.05, P < 0.05, and P < 0.05) and upregulated the expression of GDNF (P < 0.05). And ECH lowered the level of TNF-α and IFN-γ in serum (P < 0.05, P < 0.05). CONCLUSION: ECH has protective effects on the MPTP subacute model mice, its mechanism may be through inhibiting activation of microglia and astrocytes, reducing inflammatory reaction and promoting the secretion of neurotrophic factors, and eventually resulting in the reduction of the DA neurons apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。