Dual FKRP/FST gene therapy normalizes ambulation, increases strength, decreases pathology, and amplifies gene expression in LGMDR9 mice.

双重 FKRP/FST 基因疗法可使 LGMDR9 小鼠恢复正常行走能力,增强力量,减少病理变化,并增强基因表达

阅读:6
作者:Lam Patricia, Zygmunt Deborah A, Ashbrook Anna, Bennett Macey, Vetter Tatyana A, Martin Paul T
Recent clinical studies of single gene replacement therapy for neuromuscular disorders have shown they can slow or stop disease progression, but such therapies have had little impact on reversing muscle disease that was already present. To reverse disease in patients with muscular dystrophy, new muscle mass and strength must be rebuilt at the same time that gene replacement prevents subsequent disease. Here, we show that treatment of FKRP(P448L) mice with a dual FKRP/FST gene therapy packaged into a single adeno-associated virus (AAV) vector can build muscle strength and mass that exceed levels found in wild-type mice and can induce normal ambulation endurance in a 1-h walk test. Dual FKRP/FST therapy also showed more even increases in muscle mass and amplified muscle expression of both genes relative to either single gene therapy alone. These data suggest that treatment with single AAV-bearing dual FKRP/FST gene therapies can overcome loss of ambulation by improving muscle strength at the same time it prevents subsequent muscle damage. This design platform could be used to create therapies for other forms of muscular dystrophy that may improve patient outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。