Increased Levels of Circulating Methylglyoxal Have No Consequence for Cerebral Microvascular Integrity and Cognitive Function in Young Healthy Mice.

循环中甲基乙二醛水平升高对年轻健康小鼠的脑微血管完整性和认知功能没有影响

阅读:6
作者:Berends Eline, Vangrieken Philippe, Amiri Naima, van de Waarenburg Marjo P H, Scheijen Jean L J M, Hermes Denise J H P, Wouters Kristiaan, van Oostenbrugge Robert J, Schalkwijk Casper G, Foulquier Sébastien
Diabetes and other age-related diseases are associated with an increased risk of cognitive impairment, but the underlying mechanisms remain poorly understood. Methylglyoxal (MGO), a by-product of glycolysis and a major precursor in the formation of advanced glycation end-products (AGEs), is increased in individuals with diabetes and other age-related diseases and is associated with microvascular dysfunction. We now investigated whether increased levels of circulating MGO can lead to cerebral microvascular dysfunction, blood-brain barrier (BBB) dysfunction, and cognitive impairment. Mice were supplemented or not with 50 mM MGO in drinking water for 13 weeks. Plasma and cortical MGO and MGO-derived AGEs were measured with UPLC-MS/MS. Peripheral and cerebral microvascular integrity and inflammation were investigated. Cerebral blood flow and neurovascular coupling were investigated with laser speckle contrast imaging, and cognitive tests were performed. We found a 2-fold increase in plasma MGO and an increase in MGO-derived AGEs in plasma and cortex. Increased plasma MGO did not lead to cerebral microvascular dysfunction, inflammation, or cognitive decline. This study shows that increased concentrations of plasma MGO are not associated with cerebral microvascular dysfunction and cognitive impairment in healthy mice. Future research should focus on the role of endogenously formed MGO in cognitive impairment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。