Cyclin-dependent kinase 5 (CDK5) plays a critical role in the inflammatory response. Macrophages are pivotal orchestrators of inflammation, fibrosis, and wound repair. However, the effectiveness of CDK5 in macrophages on cutaneous wound healing remains inadequately characterized. We determined the role of CDK5 signaling pathway in macrophages in mouse cutaneous wound healing through the established macrophage-specific deletion of CDK5 (myeCDK5(-/-)) mice and the pharmacological CDK5 inhibitor Roscovitine. Phosphorylated proteomics, western blotting, Masson staining, and dualimmunofluorescence staining were performed to investigate the potential mechanisms underlying CDK5-mediated inflammatory regulation in macrophages in wound healing. CDK5 expression and phosphorylation were both elevated significantly in cutaneous wound healing process in mice. Moreover, an accelerated wound healing in myeCDK5(-/-) mice was exhibited with the reduced pro-inflammatory mediators (IL-1β and iNOS) and the elevated anti-inflammatory markers (IL-10 and CD163) expression significantly. CDK5 deficiency in macrophages enhanced tissue remodeling, evidenced by increased collagen deposition and capillary density (CD31(+) cells). Consistently, Roscovitine-treated mice also showed accelerated wound healing, accompanied by decreased pro-inflammatory factors and increased anti-inflammatory markers at the wound site. Mechanistically, the decreased phosphorylation of SIRT1 at the Ser14 and Ser47 sites, as a substrate of CDK5, was confirmed in myeCDK5(-/-) mice. These data are the first to indicate that CDK5 signaling-dependent regulation of SIRT1 phosphorylation in macrophage-mediated inflammation is required for the wound healing process, warranting consideration of the CDK5-SIRT1 pathway as a therapeutic target for cutaneous wound healing.
Inhibition of CDK5 signaling mediated inflammation in macrophages promotes cutaneous wound healing.
抑制巨噬细胞中 CDK5 信号介导的炎症可促进皮肤伤口愈合
阅读:6
作者:Wang Jingjing, Ji Lin, Gao Yingbo, Sun Jingyu, Zhou Xiaobin, Ding Yujia, Zhou Zihan, Guo Xiaofan, Liu Chao, Wang Yujie, Zhang Qingfu, Lv Zhenmu, Ma Dong
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 27; 15(1):18509 |
| doi: | 10.1038/s41598-025-02488-9 | 研究方向: | 信号转导、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
