Mechanistic Insights into Salvigenin for Glucocorticoid-Induced Femoral Head Osteonecrosis: A Network Pharmacology and Experimental Study.

糖皮质激素诱导股骨头坏死中 Salvigenin 的机制研究:网络药理学和实验研究

阅读:6
作者:Zhu Zhengjie, Zhong Yujian, He Ruyuan, Zhong Changheng, Chen Junwen, Peng Hao
Background/Objectives: Glucocorticoid-induced osteonecrosis of the femoral head (GIOFH) is a debilitating condition resulting from impaired bone metabolism and vascular disruption due to prolonged glucocorticoid use. This study aimed to explore the therapeutic potential of salvigenin, a flavonoid with antioxidative and estrogen-like properties, in alleviating GIOFH by modulating estrogen receptor alpha (ESR1) pathways. Methods: A network pharmacology approach was utilized to identify salvigenin's potential targets and their association with GIOFH. Protein-protein interaction networks, along with Gene Ontology and KEGG pathway analyses, were conducted to clarify salvigenin's multi-target mechanisms. Molecular docking and dynamics simulations assessed the interaction between salvigenin and ESR1. Experimental validation included in vitro assays on MG63 cells treated with dexamethasone (Dex) to mimic GIOFH, evaluating oxidative stress, apoptosis, osteogenic differentiation, and ESR1 expression. Results: Network analysis identified ESR1, NOS3, and MMP9 as key hub targets of salvigenin. Molecular docking and dynamics simulations confirmed stable binding of salvigenin to ESR1. Salvigenin significantly reduced Dex-induced oxidative stress and apoptosis in osteoblasts while restoring osteogenic differentiation and ESR1 expression. Functional assays showed improved mineralized nodule formation, ALP activity, and mitochondrial integrity in salvigenin-treated cells. Conclusions: Salvigenin exhibits significant therapeutic potential in addressing GIOFH through ESR1-mediated pathways. These results offer a strong foundation for future translational studies and the development of salvigenin-based therapies for glucocorticoid-induced bone disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。