The past decade witnessed a surge in discoveries where biological systems, such as bacteria or living cells, inherently portray active polar or nematic behavior: they prefer to align with each other and form local order during migration. Although the underlying mechanisms remain unclear, utilizing their physical properties to achieve controllable cell-layer transport will be of fundamental importance. In this study, the ratchet effect is harnessed to control the collective motion of neural progenitor cells (NPCs) in vitro. NPCs travel back-and-forth and do not specify head or tail, and therefore regarded as nematics alike liquid crystals. Ratchet and splay-shaped confinements are crafted to modulate collective cell dynamics in dense environments, while jamming is not explicitly spotted. The adaptation of an agent-based simulation further revealed how the ratchet's asymmetry and active forces from nematic order synergistically reinforce the directional cell flow. These findings provide insights into topotaxis in cell populations when restricted to crowded 2D ratchets and the mechanisms that regulate collective behavior of the cells.
Active Nematics Reinforce the Ratchet Flow in Dense Environments Without Jamming.
活性向列相液晶增强了密集环境中的棘轮流动,且不会发生堵塞
阅读:6
作者:Yao Yisong, Zhao Zihui, Li He, Zhao Yongfeng, Zhang H P, Sano Masaki
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;12(11):e2412750 |
| doi: | 10.1002/advs.202412750 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
