Comprehensive analysis of the metabolomics and transcriptomics uncovers the dysregulated network and potential biomarkers of Triple Negative Breast Cancer.

对代谢组学和转录组学的综合分析揭示了三阴性乳腺癌的失调网络和潜在生物标志物

阅读:6
作者:Gong Sisi, Huang Rongfu, Wang Meie, Lian Fen, Wang Qingshui, Liao Zhijun, Fan Chunmei
Triple-negative breast cancer (TNBC) is known for its aggressive nature, lack of effective diagnostic tools and treatments, and generally poor prognosis. The objective of this study was to investigate metabolic changes in TNBC using metabolomics approaches and explore the underlying mechanisms through integrated analysis with transcriptomics. In this study, serum untargeted metabolic profiles were first examined between 18 TNBC patients and 21 healthy control (HC) subjects using liquid chromatography-mass spectrometry (LC-MS), identifying a total of 22 significantly differential metabolites (DMs). Subsequently, receiver operating characteristic analysis revealed that 7-methylguanine could serve as a potential biomarker for TNBC in both the discovery and validation sets. Additionally, transcriptomic datasets were retrieved from the GEO database to identify differentially expressed genes (DEGs) between TNBC and normal tissues. An integrative analysis of the DMs and DEGs was conducted, uncovering potential molecular mechanisms underlying TNBC. Notably, three pathways-tyrosine metabolism, phenylalanine metabolism, and glycolysis/gluconeogenesis-were enriched, providing insight into the energy metabolism disorders in TNBC. Within these pathways, two DMs (4-hydroxyphenylacetaldehyde and oxaloacetic acid) and six DEGs (MAOA, ADH1B, ADH1C, AOC3, TAT, and PCK1) were identified as key components. In summary, this study highlights metabolic biomarkers that could potentially be used for the diagnosis and screening of TNBC. The comprehensive analysis of metabolomics and transcriptomics data offers a validated and in-depth understanding of TNBC metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。