Postoperative atrial fibrillation (POAF) is the most prevalent form of secondary atrial fibrillation and increases the risk of adverse cardiovascular outcomes, such as stroke, heart failure and increased mortality. Herein, we designed an andrographolide (Andr)-loaded degradable polymer patch to deliver the drug directly to the atrial tissue for prevention of POAF. The sterile pericarditis (SP) rat model was adopted for highly relationship to clinical practice. The patch-released Andr effectively reduced the incidence of atrial fibrillation from 90 to 20%, and alleviated local atrial inflammation and oxidative stress in vivo, by using electrophysiological detection and histological analysis such as immunofluorescence, western blot and PCR. In HL-1 cells, we found the use of Andr-loaded patch could strongly inhibit the cell death, reactive oxygen species (ROS) generation and mitochondrial injury caused by LPS. Meanwhile, the use of Andr-loaded patch could effectively inhibited macrophages polarize towards M1. Mechanistically, we verified that the regulation of the cytoplasm and mitochondria Ca(2+) and ROS dynamic balance was quite important both in vivo and in vitro. Our strategy proved by regulating the inflammatory microenvironment, ROS balance and Ca(2+) homeostasis and the Andr-loaded atrial patch was effective for POAF in the SP rat model. The electrical signal of atrial stromal reentry in the case of this model was successfully mined, and the results of calcium channel were basically consistent with that of electrical signal channel. In addition, we have reported the infiltration and polarization of local inflammatory cells in the atrial of POAF at the tissue section level. Our study served as a new inspiration for the treatment of arrhythmic diseases and other ROS- and Ca(2+)- associated local illnesses.
Enhanced prevention on postoperative atrial fibrillation by using anti-inflammatory biodegradable drug patch.
使用抗炎可降解药物贴剂加强预防术后房颤
阅读:14
作者:Yu Pengcheng, Lu Weiqi, Sun Huaxin, Huang Chengchen, Zhou Xiaolin, Wang Yuxing, Zhang Zhen, Fu Guosheng, Liu Hanxiong, Ren Kefeng, Sheng Xia
| 期刊: | Regenerative Biomaterials | 影响因子: | 8.100 |
| 时间: | 2025 | 起止号: | 2025 May 14; 12:rbaf040 |
| doi: | 10.1093/rb/rbaf040 | 研究方向: | 炎症/感染 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
