Dysregulation of astrocyte-derived matrix gla protein impairs dendritic spine development in pyridoxine-dependent epilepsy.

星形胶质细胞衍生的基质Gla蛋白失调会损害吡哆醇依赖性癫痫中的树突棘发育

阅读:5
作者:Wu Junjie, Qin Dezhe, Liang Ziqi, Liu Qiang, Wang Min, Guo Ye, Guo Weixiang
In spite of adequate seizure control, approximately 75% of pyridoxine-dependent epilepsy (PDE) patients with ALDH7A1 mutation still suffer from intellectual disability. However, the mechanisms underlying brain dysfunction in PDE patients are still unknown even when seizure control is achieved. In this study, we show that mice with specific deletion of Aldh7a1 from astrocytes, but not neurons, exhibit PDE, and have defective dendritic spine development and cognitive impairment when seizure occurrence is well controlled. Mechanistically, ALDH7A1 deficiency leads to dysregulation of astrocyte-derived matrix gla protein (MGP), one of the vitamin K-dependent proteins, thereby impairing dendritic spine development and synaptic transmission. Notably, supplementation of menaquinone-7, a form of vitamin K, promotes MGP activation and rescues defective dendritic spine development, abnormal synaptic transmission, and cognitive impairment in Aldh7a1-deficient mice. Therefore, our findings not only unravel the important role of ALDH7A1 in astrocytes contributing to the pathogenesis of PDE, but also provide a potential therapeutic intervention to ameliorate cognitive impairment in PDE beyond pyridoxine treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。