Reprogramming the neuroblastoma tumor immune microenvironment to enhance GPC2 CAR T cells.

重编程神经母细胞瘤肿瘤免疫微环境以增强 GPC2 CAR T 细胞

阅读:7
作者:Giudice Anna Maria, Roth Sydney L, Matlaga Stephanie, Cresswell-Clay Evan, Mishra Pamela, Schürch Patrick M, Boateng-Antwi Kwame Attah M, Samanta Minu, Pascual-Pasto Guillem, Zecchino Vincent, Spear Timothy T, McIntyre Brendan, Chada Neil C, Wang Tingting, Liu Lingling, Wang Ruoning, Wilson John T, Wolpaw Adam J, Bosse Kristopher R
Poor tumor trafficking and the immunosuppressive tumor microenvironment (TME) limit chimeric antigen receptor (CAR) T cell efficacy in solid tumors, such as neuroblastoma. We previously optimized GPC2 CARs in human neuroblastoma xenografts leading to clinical translation; however, there have not been preclinical studies using immunocompetent models. Thus, here we generated murine GPC2 CAR T cells using the D3-GPC2-targeting single-chain variable fragment being utilized clinically (NCT05650749) and tested them in neuroblastoma syngeneic allografts. Immune-profiling of GPC2 CAR T cell-treated tumors revealed significant reprogramming of the TME, most notably poor intra-tumor CAR T cell persistence being associated with increased recruitment of myeloid-derived suppressor cells (MDSCs), along with MDSC-recruiting CXCL1/2 chemokines. These tumor-infiltrating MDSCs directly inhibited GPC2 CAR T cell activation, proliferation, and cytotoxicity ex vivo. To both capitalize on this chemokine gradient and mitigate MDSC-tumor trafficking, we engineered GPC2 CAR T cells to express the CXCL1/2 receptor, CXCR2. CXCR2-armored GPC2 CAR T cells migrated toward CXCL1/2 gradients, enhanced anti-neuroblastoma efficacy, and reduced the level of MDSCs in the TME. Together, these findings suggest CAR T cell studies in immunocompetent models are imperative to define mechanisms of solid tumor immune escape and rationally design armoring strategies that will lead to durable clinical efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。