BACKGROUND: Increasing evidence has demonstrated that non-coding RNAs, including the lncRNA MIR155HG, are involved in the pathogenesis of postmenopausal osteoporosis (PMOP). In the current study, we studied MIR155HG function in regulation of osteogenic differentiation and tried to reveal the underlying mechanisms. METHODS: Forty blood samples taken from 20 PMOP patients (PMOP group) and 20 postmenopausal individuals without osteoporosis (control group) were used to compare the contents of MIR155HG and miR-155-5p via RT-PCR. Alizarin red S staining and ALP staining were used to evaluate the osteogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs). RESULTS: Elevated levels of MIR155HG and miR-155-5p were observed in the blood samples of the PMOP group. Upregulation of MIR155HG resulted in decreased expression of OPN, OSX, ALP, RUNX2 and β-catenin but increased DKK1 expression, together with decreased Alizarin red Sâ+âand ALPâ+âstaining areas. However, downregulation of DKK1 did not obviously change the above indices induced by MIR155HG upregulation. Further experiments revealed that MIR155HG caused an increase in the expression of miR-155-5p, which also serves as an inhibitor of the osteogenic differentiation of BMSCs through binding to β-catenin. Consistent with DKK1 knockdown, downregulation of miR-155-5p only also did not obviously reverse the repressive effect of MIR155HG on osteoblastic differentiation, but downregulation of DKK1 and miR-155-5p synchronously restored the osteogenic differentiation ability of BMSCs suppressed by MIR155HG overexpression. CONCLUSION: MIR155HG suppressed the osteoblastic differentiation of BMSCs by regulating miR-155-5p and DKK1 expression. Either inhibition of miR-155-5p and DKK1 or direct suppression of MIR155HG may be effective approaches for treating PMOP.
MIR155HG suppresses the osteogenic differentiation of bone marrow mesenchymal stem cells through regulating miR-155-5p and DKK1 expression.
MIR155HG 通过调节 miR-155-5p 和 DKK1 的表达来抑制骨髓间充质干细胞的成骨分化
阅读:8
作者:Li Weimin, Yang Cheng, Xu Jiamu, Ran Dongcheng, Wang Chunqing
| 期刊: | Journal of Orthopaedic Surgery and Research | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 Apr 19; 20(1):392 |
| doi: | 10.1186/s13018-025-05798-w | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
