Physical and chemical niche of human growth plate for polarized bone development.

人类生长板的物理和化学环境对极化骨骼发育的重要性

阅读:6
作者:Xie Chang, Li Wenyue, Yao Xudong, Wu Boxuan, Fang Jinghua, Mao Renwei, Yan Yiyang, Meng Hongxu, Wu Yan, Zhang Xianzhu, Li Rui, Zhang Jie, Duan Wangping, Dai Xuesong, Wang Xiaozhao, Ouyang Hongwei
Growth plate (GP), a critical cartilaginous structure in amniotes, underpins longitudinal bone growth, yet the intricate mechanisms behind its polarized mineralization during evolution remain unclear. Herein, employing high-resolution analytical techniques, we reveal that the GP-epiphysis interface displays a sharp transition in tissue modulus, acting as a protective shell for the underlying GP, whereas the GP-metaphysis interface exhibits a gradual modulus increase, enabling efficient load redistribution to the metaphysis. This mechanical microenvironment contributes to unique microstructural and compositional transformations from GP to epiphysis and metaphysis. Notably, the GP-epiphysis interface acts as a mineralization inhibition zone while the GP-metaphysis serves as a mineralization promotion zone, orchestrated by a complex network of proteins. Proteins such as secreted phosphoprotein 1 (SPP1) and alpha-2-HS-glycoprotein (AHSG) at the GP-epiphysis interface inhibit mineralization, forming a defense line; while ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and alkaline phosphatase, biomineralization associated (ALPL), coexisting with SPP1 and AHSG, promote a sequential nucleation and assembly of calcium phosphate minerals at the GP-metaphysis. Such polarized mineralization patterns maintain the homeostasis of GPs and drive polarized bone elongation. Replicating this process in vitro, we synthesize stable amorphous calcium phosphate which shows highly controlled transformation into hydroxyapatite. This work provides a more comprehensive view of the structural integrity of human bone in development and offers strategies for controlled biomineralization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。