Impact of physical activity on brain oxidative metabolism and intrinsic capacities in young swiss mice fed a high fat diet

体力活动对高脂饮食的瑞士幼鼠大脑氧化代谢和内在能力的影响

阅读:9
作者:Clémence Viguier, Sébastien Bullich, Marlene Botella, Laure Fasseu, Amélie Alfonso, Khaoula Rekik, Sébastien Gauzin, Bruno P Guiard, Noélie Davezac

Abstract

Type 2 diabetes and obesity characterized by hallmarks of insulin resistance along with an imbalance in brain oxidative metabolism would impair intrinsic capacities (ICs), a new concept for assessing mental and physical functioning. Here, we explored the impact of physical activity on antioxidant responses and oxidative metabolism in discrete brain areas of HFD or standard diet (STD) fed mice but also its consequences on specific domains of ICs. 6-week-old Swiss male mice were exposed to a STD or a HFD for 16 weeks and half of the mice in each group had access to an activity wheel and the other half did not. As expected HFD mice displayed peripheral insulin resistance but also a persistent inhibition of aconitase activity in cortices revealing an increase in mitochondrial reactive oxygen species (ROS) production. Animals with access to the running wheel displayed an improvement of insulin sensitivity regardless of the diet factor whereas ROS production remained impaired. Moreover, although the access of the running wheel did not influence mitochondrial biomass, in the oxidative metabolism area, it produced a slight decrease in brain SOD1 and catalase expression notably in HFD fed mice. At the behavioural level, physical exercise produced anxiolytic/antidepressant-like responses and improved motor coordination in both STD and HFD fed mice. However, this non-pharmacological intervention failed to enhance cognitive performance. These findings paint a contrasting landscape about physical exercise as a non-pharmacological intervention for positively orienting the aging trajectory.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。