Advancing mitochondrial therapeutics: Synthesis and pharmacological evaluation of pyrazole-based inhibitors targeting the mitochondrial pyruvate carrier.

推进线粒体疗法:靶向线粒体丙酮酸载体的吡唑类抑制剂的合成和药理学评价

阅读:16
作者:Maram Lingaiah, Michael Jessica M, Politte Henry, Srirama Vaishnavi S, Hadji Aymen, Habibi Mohammad, Kelly Meredith O, Brookheart Rita T, Finck Brian N, Hegazy Lamees, McCommis Kyle S, Elgendy Bahaa
Inhibition of mitochondrial pyruvate transport via the mitochondrial pyruvate carrier (MPC) has shown beneficial effects in treating metabolic diseases, certain cancers, various forms of neurodegeneration, and hair loss. These benefits arise either from the direct inhibition of mitochondrial pyruvate metabolism or from the metabolic rewiring when pyruvate entry is inhibited. However, current MPC inhibitors are either nonspecific or possess poor pharmacokinetic properties. To address this, approximately 50 pyrazole-based MPC inhibitors were synthesized to explore the structure-activity relationship for MPC inhibition, evaluated through inhibition of mitochondrial pyruvate respiration. These inhibitors were designed with increased steric hindrance around electron-deficient double bonds, allowing for refined structural modifications that reduce their potential to act as Michael acceptors. Additionally, the new MPC inhibitors directly inhibited stellate cell activation, indicating their potential as therapeutic candidates for metabolic dysfunction-associated steatohepatitis (MASH). Unlike the thiazolidinedione class of MPC inhibitors, these compounds did not activate the nuclear receptor PPARγ. Molecular modeling was conducted to explore interactions between these novel inhibitors and the MPC complex. We have identified the chemical determinants critical for MPC inhibition and successfully developed novel inhibitors that are potent, specific and possess excellent physicochemical properties, high solubility, and outstanding metabolic stability in human liver microsomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。