Differential Regulation of Human and Mouse Myometrial Contractile Activity by FSH as a Function of FSH Receptor Density.

FSH受体密度对人和小鼠子宫肌层收缩活动的差异性调节

阅读:8
作者:Stilley Julie A W, Guan Rongbin, Santillan Donna A, Mitchell Bryan F, Lamping Kathryn G, Segaloff Deborah L
Previous studies from our laboratory revealed that the follicle-stimulating hormone receptor (FSHR) is expressed at low levels in nonpregnant human myometrium and that it is up-regulated in pregnant term nonlaboring myometrium; however, the physiological relevance of these findings was unknown. Herein, we examined signaling pathways stimulated by FSH in immortalized uterine myocytes expressing recombinant FSHR at different densities and showed that cAMP accumulation is stimulated in all cases but that inositol phosphate accumulation is stimulated only at high FSHR densities. Because an increase in cAMP quiets myometrial contractile activity but an increase in 1,4,5-triphosphoinositol stimulates contractile activity, we hypothesized that FSHR density dictates whether FSH quiets or stimulates myometrial contractility. Indeed, in human and mouse nonpregnant myometrium, which express low levels of FSHR, application of FSH resulted in a quieting of contractile activity. In contrast, in pregnant term nonlaboring myometrium, which expresses higher levels of FSHR, application of FSH resulted in increased contractile activity. Examination of pregnant mouse myometrium from different stages of gestation revealed that FSHR levels remained low throughout most of pregnancy. Accordingly, through mid-gestation, the application of FSH resulted in a quieting of contractile activity. At Pregnancy Day (PD) 16.5, FSHR was up-regulated, although not yet sufficiently to mediate stimulation of contractility in response to FSH. This outcome was not observed until PD 19.5, when FSHR was further up-regulated. Our studies describe a novel FSHR signaling pathway that regulates myometrial contractility, and suggest that myometrial FSHR levels dictate the quieting vs. stimulation of uterine contractility in response to FSH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。