Background:Rehmannia glutinosa, a traditional Chinese herb, is commonly used to treat vascular-related disorders. Sepsis-associated vascular endothelial dysfunction is closely associated with mitochondrial damage. This study investigated the protective effects of secondary metabolites from R. glutinosa against LPS-induced mitochondrial dysfunction in endothelial cells, providing potential therapeutic insights into sepsis-related vascular complications. Methods: Phytochemical profiling of fresh R. glutinosa roots was conducted, and the structures of new secondary metabolites (1 and 2) were elucidated through comprehensive spectroscopic analysis and ECD calculations. UPLC-Q-TOF-MS/MS characterized phenylethanoid glycosides. Mitochondrial function was assessed by measuring the membrane potential, ROS levels, and TOM20/DRP1 expression in LPS-injured HUVECs. Results: Two novel eremophilane-type sesquiterpenes, remophilanetriols J (1) and K (2), along with five known phenylethanoid glycosides (3-7), were isolated from the fresh roots of R. glutinosa. UPLC-Q-TOF-MS/MS analysis revealed unique fragmentation pathways for phenylethanoid glycosides (3-7). In LPS-injured HUVECs, all compounds collectively restored the mitochondrial membrane potential, attenuated ROS accumulation, and modulated TOM20/DRP1 expression. In particular, remophilanetriol K (2) exhibited potent protective effects at a low concentration (1.5625 μM). Conclusions: This study identifies R. glutinosa metabolites as potential therapeutics for sepsis-associated vascular dysfunction by preserving mitochondrial homeostasis. This study provides a mechanistic basis for the traditional use of R. glutinosa and offers valuable insights into the development of novel therapeutics targeting mitochondrial dysfunction in sepsis.
Secondary Metabolites from Rehmannia glutinosa Protect Mitochondrial Function in LPS-Injured Endothelial Cells.
地黄的次生代谢产物可保护LPS损伤的内皮细胞的线粒体功能
阅读:5
作者:Zhong Liwen, Lu Mengkai, Fang Huiqi, Li Chao, Qu Hua, Ding Gang
| 期刊: | Pharmaceuticals | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Jul 27; 18(8):1125 |
| doi: | 10.3390/ph18081125 | 研究方向: | 代谢、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
