Comparative study of cytotoxic Signaling pathways in H1299 cells exposed to alternative Bisphenols: BPA, BPF, and BPS.

对暴露于不同双酚类物质(BPA、BPF 和 BPS)的 H1299 细胞中的细胞毒性信号通路进行比较研究

阅读:5
作者:Kim Ji-Young, Shin Geun-Seup, An Mi-Jin, Lee Hyun-Min, Jo Ah-Ra, Park Yuna, Kim Jinho, Hwangbo Yujeong, Kim Chul-Hong, Kim Jung-Woong
BACKGROUND: Bisphenols are prevalent in food, plastics, consumer goods, and industrial products. Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and bisphenol S (BPS), are known to act as estrogen mimics, leading to reproductive disorders, disruptions in fat metabolism, and abnormalities in brain development. OBJECTIVES: Despite numerous studies exploring the adverse effects of bisphenols both in vitro and in vivo, the molecular mechanisms by which these compounds affect lung cells remain poorly understood. This study aims to compare the effects of BPA, BPF, and BPS on the physiological behavior of human nonsmall cell lung cancer (NSCLC) cells. MATERIALS AND METHODS: Human non-small cell lung cancer (NSCLC) H1299 cells were treated with various concentration of BPA, BPF and BPS during different exposure time. Cellular physiology for viability and cell cycle was assessed by the staining with apoptotic cell makers such as active Caspase-3 and cyclins antibodies. Toxicological effect was quantitatively counted by using flow-cytometry analysis. RESULTS: Our findings indicate that BPA induces apoptosis by increasing active Caspase-3 levels in H1299 cells, whereas BPF and BPS do not promote late apoptosis. Additionally, BPA was found to upregulate cyclin B1, causing cell cycle arrest at the G0/G1 phase and leading to apoptotic cell death through Caspase-3 activation. Conclusion: These results demonstrate that BPA, BPF, and BPS differentially impact cell viability, cell cycle progression, and cell death in human NSCLC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。