ALS-Linked VapB P56S Mutation Alters Neuronal Mitochondrial Turnover at the Synapse.

ALS 相关 VapB P56S 突变改变突触处的神经元线粒体更新

阅读:5
作者:Wong Hiu-Tung C, Lang Angelica E, Stein Chris, Drerup Catherine M
Mitochondrial population maintenance in neurons is essential for neuron function and survival. Contact sites between mitochondria and the endoplasmic reticulum (ER) are poised to regulate mitochondrial homeostasis in neurons. These contact sites can facilitate transfer of calcium and lipids between the organelles and have been shown to regulate aspects of mitochondrial dynamics. Vesicle-associated membrane protein-associated protein B (VapB) is an ER membrane protein present at a subset of ER-mitochondrial contact sites. A proline-to-serine mutation in VapB at amino acid 56 (P56S) correlates with susceptibility to amyotrophic lateral sclerosis (ALS) type 8. Given the relationship between failed mitochondrial health and neurodegenerative disease, we investigated the function of VapB in mitochondrial population maintenance. We demonstrated that transgenic expression of VapB(P56S) in zebrafish larvae (sex undetermined) increased mitochondrial biogenesis, causing increased mitochondrial population size in the axon terminal. Expression of wild-type VapB did not alter biogenesis but, instead, increased mitophagy in the axon terminal. Using genetic manipulations to independently increase mitochondrial biogenesis, we show that biogenesis is normally balanced by mitophagy to maintain a constant mitochondrial population size. VapB(P56S) transgenics fail to increase mitophagy to compensate for the increase in mitochondrial biogenesis, suggesting an impaired mitophagic response. Finally, using a synthetic ER-mitochondrial tether, we show that VapB's function in mitochondrial turnover is likely independent of ER-mitochondrial tethering by contact sites. Our findings demonstrate that VapB can control mitochondrial turnover in the axon terminal, and this function is altered by the P56S ALS-linked mutation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。