Inhibition of Salt-Inducible Kinase 2 Protects Motor Neurons From Degeneration in ALS by Activating Autophagic Flux and Enhancing mTORC1 Activity.

抑制盐诱导激酶 2 可激活自噬流并增强 mTORC1 活性,从而保护 ALS 中的运动神经元免受退化

阅读:7
作者:Liang Weiwei, Zhang Chunting, Wang Di, Su Xiaoli, Tan Xingli, Yang Yueqing, Cong Chaohua, Wang Ying, Huo Di, Wang Hongyong, Wang Shuyu, Wang Xudong, Feng Honglin
OBJECTIVES: Autophagic impairment has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Salt-inducible kinase 2 (SIK2), a member of the AMP-activated protein kinase (AMPK) family widely expressed in the central nervous system, plays critical roles in neuronal survival, neurogenesis, and the regulation of autophagy. This study aims to investigate the effects and underlying mechanisms of SIK2 in the pathogenesis of ALS. METHODS: In our work, we used both in vivo and in vitro models of ALS to study the effect of SIK2. Protein and RNA levels were assessed by Western blot, RT-qPCR, immunofluorescence, and immunohistochemistry. Cell viability and apoptosis were evaluated using CCK-8 assay and flow cytometry. Transmission electron microscopy was employed to examine autophagic vacuoles. Additionally, lentivirus particles carrying shRNA targeting SIK2 (sh-SIK2) were injected into the lateral ventricle of ALS mice at 60 days of age. Motor performance was evaluated by the rotarod test. RESULTS: We observed that increased expression of SIK2 significantly contributed to the degeneration of motor neurons in both the cellular model and the hSOD1(G93A) transgenic mice model of ALS. SIK2 knockdown enhanced neuronal survival and restored mTORC1 activity. Furthermore, SIK2 suppression facilitated the clearance of mutant SOD1 accumulation by activating autophagic flux and enhancing lysosomal acidification. Conversely, SIK2 overexpression impaired mTORC1 activity, exacerbating autophagy dysfunction by inhibiting lysosomal function, and ultimately led to motor neuron degeneration. In vivo, SIK2 deficiency delayed disease onset and extended the lifespan of ALS mice by enhancing autophagy-mediated clearance of mutant SOD1 aggregates. CONCLUSIONS: Our findings reveal that SIK2 regulates autophagic flux by modulating lysosomal acidification, thereby influencing the degradation of mutant SOD1 aggregates. SIK2 suppression enhances autophagy-mediated clearance of toxic protein aggregates and protects motor neurons, highlighting its potential as a therapeutic target for ALS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。