sPLA2-IIA modifies progranulin deficiency phenotypes in mouse models.

sPLA2-IIA 可改变小鼠模型中的前粒蛋白缺乏表型

阅读:5
作者:Yang Cha, Du Huan, Lee Gwang Bin, Uematsu Masaaki, He Weiguo, Doré Etienne, Yu Weizhi, Sanford Ethan J, Smolka Marcus B, Boilard Eric, Baskin Jeremy M, Hao Ling, Hu Fenghua
BACKGROUND: Haploinsufficiency of the progranulin (PGRN) protein is a leading cause of frontotemporal lobar degeneration (FTLD). Mouse models have been developed to study PGRN functions. However, PGRN deficiency in the commonly used C57BL/6 mouse strain background leads to very mild phenotypes, and pathways regulating PGRN deficiency phenotypes remain to be elucidated. METHODS: We generated PGRN-deficient mice in the FVB/N background and compared PGRN deficiency phenotypes between C57BL/6 and FVB/N backgrounds via immunostaining, western blot, RNA-seq, and proteomics approaches. We demonstrated a novel pathway in modifying PGRN deficiency phenotypes using inhibitor treatment and AAV-mediated overexpression in mouse models. RESULTS: We report that PGRN loss in the FVB/N mouse strain results in earlier onset and stronger FTLD-related and lysosome-related phenotypes. We found that PGRN interacts with sPLA2-IIA, a member of the secreted phospholipase A2 (sPLA2) family member and a key regulator of inflammation, that is expressed in FVB/N but not C57BL/6 background. sPLA2-IIA inhibition rescues PGRN deficiency phenotypes, while sPLA2-IIA overexpression drives enhanced gliosis and lipofuscin accumulation in PGRN-deficient mice. Additionally, RNA-seq and proteomics analysis revealed that mitochondrial pathways are upregulated in the PGRN-deficient C57BL/6 mice but not in the FVB/N mice. CONCLUSIONS: Our studies establish a better mouse model for FTLD-GRN and uncover novel pathways modifying PGRN deficiency phenotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。