Acrylamide, a harmful substance generated during the normal thermal treatment of foods, has been shown to adversely affect human health, particularly the vital intestinal barrier function. Meanwhile, natural polysaccharides are recognized to exert an important biofunction in the intestine by protecting barrier integrity. In this study, the non-starch, water-soluble, and nondigestive yam polysaccharide (YP) was extracted from fresh Chinese yam, while two selenylated derivatives with different extents of selenylation were prepared via the HNO(3)-Na(2)SeO(3) reaction system, and designated as YPSe-I and YPSe-II, respectively. Their protective activities and the associated molecular mechanisms of these substances against acrylamide-induced damage in rat intestinal epithelial (IEC-6) cells were thereby investigated. The experimental results demonstrated that the selenium contents of YPSe-I and YPSe-II were 0.80 and 1.48 g/kg, respectively, whereas that of the original YP was merely 0.04 g/kg. In IEC-6 cells, in comparison with YP, both YPSe-I and YPSe-II showed higher efficacy than YP in alleviating acrylamide-induced cell toxicity through promoting cell viability, suppressing the release of lactate dehydrogenase, and decreasing the generation of intracellular reactive oxygen species. Both YPSe-I and YPSe-II could also manifest higher effectiveness than YP in maintaining cell barrier integrity against the acrylamide-induced barrier disruption. The mentioned barrier protection was achieved by increasing transepithelial electrical resistance, reducing paracellular permeability, facilitating the distribution and expression of F-actin between the cells, and up-regulating the production of three tight junctions, namely ZO-1, occludin, and claudin-1. Additionally, acrylamide was observed to trigger the activation of the MAPK signaling pathway, thereby leading to cell barrier dysfunction. In contrast, YPSe-I and particularly YPSe-II were capable of down-regulating two MAPK-related proteins, namely p-p38 and p-JNK, and thereby inhibiting the acrylamide-induced activation of the MAPK signaling pathway. Moreover, YPSe-II in the cells was consistently shown to provide greater barrier protection than YPSe-I. In conclusion, chemical selenylation of YP could cause higher activity in mitigating acrylamide-induced cytotoxicity and intestinal barrier dysfunction, while the efficacy of activity enhancement was positively affected by the selenylation extent.
Covalent Grafting of Inorganic Selenium to the Water-Soluble and Nondigestive Chinese Yam Polysaccharides Causes Greater Protection of IEC-6 Cells with Acrylamide Injury.
将无机硒共价接枝到水溶性、不可消化的山药多糖上,可更好地保护 IEC-6 细胞免受丙烯酰胺损伤
阅读:5
作者:Wang Zhen-Xing, Zhang Li-Li, Zhao Xin-Huai
| 期刊: | Foods | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Apr 29; 14(9):1560 |
| doi: | 10.3390/foods14091560 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
