Targeting the PTN/PTPRZ1-ROS Pathway to Promote Bone Regeneration.

靶向PTN/PTPRZ1-ROS通路以促进骨再生

阅读:6
作者:Zhao Kai, Guo Yusi, He Ying, Wu Yujia, Hu Zhewen, Chi Xiaopei, Deng Xuliang
Background: Osteoporosis is a global health problem that significantly decreases patients' quality of life and causes tremendous medical burdens. Therefore, exploring effective targeting strategies for osteoporosis treatment is crucial. Previous studies have indicated that pleiotrophin (PTN) was a secretory factor involved in several biological processes, such as angiogenesis, neural development, and abnormal osteogenic functions in osteoporosis. However, the roles of PTN in osteogenics and the mechanisms remain unclear. Methods: In this study, we explored the effects and mechanisms of PTN in regulating osteogenic functions using real-time quantitative PCR, immunofluorescence, ALP detection, a TUNEL assay, RNA sequencing, and phosphorylation quantitative proteomics. Fracture-healing experiments in osteoporosis rats were also conducted to evaluate the osteogenic functions of PTN in vivo. Results: We found that PTN significantly inhibited apoptosis and promoted the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs). Further experiments showed that PTN regulated the biological functions of rBMSCs by promoting antioxidant functions and reducing cellular reactive oxygen species (ROS), thereby protecting rBMSCs from accumulated ROS. Additionally, we found that PTN binds to the PTPRZ1 receptor, inducing intracellular PLCG1 phosphorylation and NCOA3 nuclear translocation, which regulate the downstream antioxidant functions of rBMSCs. Additionally, we verified that PTN effectively promoted fracture healing in osteoporotic animals. Conclusions: This study elucidates the mechanisms by which PTN promotes osteogenesis and verifies this effect in vivo, offering an effective target for osteoporosis treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。