Semaphorin 3F is elevated in serum of heart failure patients and inhibits cardiac angiogenesis via the VEGF/Akt/eNOS pathway.

心力衰竭患者血清中信号素 3F 水平升高,并通过 VEGF/Akt/eNOS 通路抑制心脏血管生成

阅读:6
作者:Petrova Diana, Weberbauer Miki, Reichert Stephanie, Scheid Stephanie, Esser Jennifer, Fink Katrin, Duerschmied Daniel, Moser Martin, Helbing Thomas
Left ventricular (LV) remodeling in heart failure (HF) is associated with vascular rarefaction and impaired angiogenesis. The inhibition of vascular endothelial growth factor (VEGF)-mediated angiogenesis is a key feature in the pathophysiology of HF. Semaphorin (Sema) 3F is a known inhibitor of VEGF signaling, but its role in HF remains to be elucidated. Serum Sema3F levels were measured in HF patients (n = 70) by ELISA and were compared to those in patients with coronary artery disease (CAD, n = 26). Sema3F levels were significantly increased in HF patients. Sema3F RNA and protein expression were upregulated by hypoxia in cardiac endothelial cells (HCECs) as demonstrated by quantitative RT-PCR and Western blotting (WB). In Matrigel® sprouting assays, endothelial cell sprouting and branching were decreased in response to HF patient serum, suggesting that HF serum contains anti-angiogenic factors. Recombinant human Sema3F attenuated VEGF-mediated angiogenesis in Matrigel® sprouting, spheroid sprouting and aortic ring assays. Vice versa, siRNA-based Sema3F knockdown promoted angiogenesis. In zebrafish, morpholino-based Sema3F knockdown led to increased mortality and induced a vascular phenotype. Mechanistically, Sema3F inhibited VEGF-induced Akt and eNOS phosphorylation in endothelial cells, and Sema3F knockdown increased phosphorylation of Akt and eNOS. Sema3F is elevated in serum of HF patients and has anti-angiogenic properties in cardiac angiogenesis through inhibition of the VEGF/Akt/eNOS pathway. Thus, targeting Sema3F could present a therapeutic approach to advanced HF in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。