Celecoxib induces apoptosis in cervical cancer cells independent of cyclooxygenase using NF-kappaB as a possible target.

塞来昔布通过NF-κB作为可能的靶点,在不依赖环氧合酶的情况下诱导宫颈癌细胞凋亡

阅读:8
作者:Kim Su-Hyeong, Song Sang-Hyun, Kim Sang-Gyun, Chun Kyung-Soo, Lim So-Young, Na Hye-Kyung, Kim Jae Weon, Surh Young-Joon, Bang Yung-Jue, Song Yong-Sang
PURPOSE: Recently, many studies have shown that celecoxib induces apoptosis in various cancer cells by different mechanisms depending on the cell type. This study examined the apoptotic effect of celecoxib in cervical cancer cells and its mechanism. METHODS: Cell viability was measured by MTT assay and apoptosis was examined by DNA fragmentation and flow cytometry. Western blotting and immunoprecipitation were used to explore various mechanisms of celecoxib-induced apoptosis. The activation of NF-kappaB was confirmed by EMSA. RESULTS: Celecoxib induced apoptosis independent of COX-2 activity. This event accompanied the activation of caspase-8 and -9 with Bid cleavage and the loss of mitochondrial membrane potential. The protective effect of caspase-8 and -9 inhibitors on celecoxib-induced apoptosis suggests the importance of caspase-8 and -9 activation in this apoptotic pathway. Fas/FADD-mediated apoptotic pathway was detected only in C33A cells, demonstrated by the immunoprecipitation of Fas-FADD in celecoxib-treated cells and the protective effect of FADD dominant negative mutant. Finally, NF-kappaB appeared to be involved in celecoxib-induced apoptosis, as revealed by increased NF-kB DNA binding activity in a time-dependent manner and attenuation of its proapoptotic effect by N-tosyl-L-phenylalanyl-chloromethyl ketone, an NF-kB blocker. CONCLUSIONS: These data show that caspase-8 and -9 are involved in the apoptotic effect of celecoxib in cervical cancer cells. This requires the FADD-dependent pathway in a cell type-specific manner. In addition, NF-kappaB may play a key role in celecoxib-induced apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。