BACKGROUND: Humans are genetically defective in synthesizing the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc), but can metabolically incorporate it from dietary sources (particularly red meat and milk) into glycoproteins and glycolipids of human tumors, fetuses and some normal tissues. Metabolic incorporation of Neu5Gc from animal-derived cells and medium components also results in variable contamination of molecules and cells intended for human therapies. These Neu5Gc-incorporation phenomena are practically significant, because normal humans can have high levels of circulating anti-Neu5Gc antibodies. Thus, there is need for the sensitive and specific detection of Neu5Gc in human tissues and biotherapeutic products. Unlike monoclonal antibodies that recognize Neu5Gc only in the context of underlying structures, chicken immunoglobulin Y (IgY) polyclonal antibodies can recognize Neu5Gc in broader contexts. However, prior preparations of such antibodies (including our own) suffered from some non-specificity, as well as some cross-reactivity with the human sialic acid N-acetylneuraminic acid (Neu5Ac). METHODOLOGY/PRINCIPAL FINDINGS: We have developed a novel affinity method utilizing sequential columns of immobilized human and chimpanzee serum sialoglycoproteins, followed by specific elution from the latter column by free Neu5Gc. The resulting mono-specific antibody shows no staining in tissues or cells from mice with a human-like defect in Neu5Gc production. It allows sensitive and specific detection of Neu5Gc in all underlying glycan structural contexts studied, and is applicable to immunohistochemical, enzyme-linked immunosorbent assay (ELISA), Western blot and flow cytometry analyses. Non-immune chicken IgY is used as a reliable negative control. We show that these approaches allow sensitive detection of Neu5Gc in human tissue samples and in some biotherapeutic products, and finally show an example of how Neu5Gc might be eliminated from such products, by using a human cell line grown under defined conditions. CONCLUSIONS: We report a reliable antibody-based method for highly sensitive and specific detection of the non-human sialic acid Neu5Gc in human tissues and biotherapeutic products that has not been previously described.
Sensitive and specific detection of the non-human sialic Acid N-glycolylneuraminic acid in human tissues and biotherapeutic products.
对人体组织和生物治疗产品中的非人唾液酸 N-羟乙酰神经氨酸进行灵敏而特异的检测
阅读:8
作者:Diaz Sandra L, Padler-Karavani Vered, Ghaderi Darius, Hurtado-Ziola Nancy, Yu Hai, Chen Xi, Brinkman-Van der Linden Els C M, Varki Ajit, Varki Nissi M
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2009 | 起止号: | 2009;4(1):e4241 |
| doi: | 10.1371/journal.pone.0004241 | 种属: | Human |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
