Programmed cell death protein 1 (PD-1) blockade regulates skeletal remodeling in a sex- and age-dependent manner

程序性细胞死亡蛋白1 (PD-1) 阻断以性别和年龄依赖的方式调节骨骼重塑。

阅读:3
作者:Gwenyth J Joseph ,Lawrence A Vecchi Iii ,Sasidhar Uppuganti ,Jeremy F Kane ,Margaret Durdan ,Paige Hill ,Ashtyn G McAdoo ,Hidenori Tanaka ,David Kell ,Madeline B Searcy ,Wei Chen ,Eben L Rosenthal ,David G Harrison ,Jeffry S Nyman ,Megan M Weivoda ,Rachelle W Johnson
Immune checkpoint inhibitors (ICIs) block immunoregulatory receptor-ligand interactions and robustly increase survival of cancer patients but frequently result in immune-related adverse events (irAEs). While rheumatologic toxicities are commonly reported as irAEs, the effect of immune checkpoint blockade on the underlying mechanisms of ICI-induced fractures and bone loss is controversial, with reports of both positive and negative effects on bone mass in preclinical models. However, no previous reports have investigated the impact of ICIs on females or aged mice, or on fracture risk in either sex. We report that global deletion of programmed cell death protein 1 (PD-1) broadly results in bone loss in skeletally mature male and female PD-1-/- mice, with a sexually divergent phenotype in adolescent mice, decreased bone strength in adult males and young females, and expansion of multiple T cell subsets in the bone marrow. In a model of pharmacologic PD-1 blockade, administration of α-PD-1 reduced bone mass, expanded multiple T cell subsets in the bone marrow, and increased osteoclast activity and resorptive capacity. T cell deficient mice were resistant to osteoclast-mediated bone loss following α-PD-1 therapy, suggesting that T cells in the bone marrow are necessary for bone loss in the setting of ICI therapy. These findings may be leveraged to identify patients at greater fracture risk following ICI therapy due to enrichment of effector T cell populations in the bone marrow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。