Hypoxia in solid tumors, including head and neck cancer (HNC), contributes to treatment resistance, aggressive tumor phenotypes, and poorer clinical outcomes. Perfluorocarbon nanodroplets have emerged as promising drugs to alleviate tumor hypoxia. These versatile nanocarriers can also encapsulate and deliver various therapeutic agents, offering a multifunctional approach to cancer treatment. However, a detailed characterization of hypoxia alleviation, particularly the duration of hypoxia treatment drug residence, has not been thoroughly investigated. In this study, we developed and characterized perfluoropentane nanodroplets (PFP NDs) for the codelivery of oxygen and the photoactivatable drug benzoporphyrin derivative (BPD) to hypoxic HNC spheroids. The PFP NDs exhibited excellent stability, efficient oxygen loading/release, and biocompatibility. Using 3D multicellular tumor spheroids of FaDu and SCC9 HNC cells, we investigated the spatiotemporal dynamics of hypoxia within these spheroids and the ability of oxygenated PFP NDs to alleviate hypoxia. Our results showed that oxygen-loaded PFP NDs effectively penetrated the core of tumor spheroids, significantly reducing hypoxia, as evidenced by the downregulation of hypoxia-inducible factors HIF-1α and HIF-2α. Importantly, we demonstrated sustained hypoxia alleviation for up to 3 h post-treatment with PFP NDs. BPD-loaded PFP NDs successfully delivered the photosensitizer into the spheroid core in a time-dependent manner. Furthermore, we evaluated the efficacy of oxygen-dependent treatment modality, namely, photodynamic therapy (PDT) with BPD and oxygen-loaded PFP NDs compared to free BPD. The NDs formulation exhibited superior PDT outcomes, which were attributed to improved oxygen availability during the treatment. This study provides comprehensive evidence for the potential of PFP NDs as a codelivery platform to overcome hypoxia-mediated treatment resistance and enhance PDT efficacy in HNC. Our findings pave the way for further investigation of this promising approach in more complex in vivo models, potentially leading to improved therapeutic strategies for hypoxic solid tumors.
Oxygen-Releasing Nanodroplets Relieve Intratumoral Hypoxia and Potentiate Photodynamic Therapy in 3D Head and Neck Cancer Spheroids.
释放氧气的纳米液滴可缓解肿瘤内缺氧,并增强 3D 头颈癌球体的光动力疗法效果
阅读:15
作者:Xavierselvan Marvin, Shethia Ronak Tarun, Bednarke Brooke, Yang Vicky, Moses Leah, Yalamarty Satya Siva Kishan, Cook Jason, Mallidi Srivalleesha
| 期刊: | ACS Biomaterials Science & Engineering | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 14; 11(4):2378-2395 |
| doi: | 10.1021/acsbiomaterials.4c02031 | 研究方向: | 肿瘤 |
| 疾病类型: | 头颈癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
