Efficient reprogramming of mouse fibroblasts to neuronal cells including dopaminergic neurons.

将小鼠成纤维细胞高效重编程为神经元细胞,包括多巴胺能神经元

阅读:7
作者:Oh Seung-ick, Park Hang-soo, Hwang Insik, Park Han-kyul, Choi Kyung-Ah, Jeong Hyesun, Kim Suhng Wook, Hong Sunghoi
Somatic cells were directly converted to functional neurons through the use of a combination of transcription factors, including Ascl1, Brn2, and Myt1l. However, a major limitation is the lack of a reliable source of cell-replacement therapy for neurological diseases. Here, we show that a combination of the transcription factors Ascl1 and Nurr1 (AN) and neurotrophic factors including SHH and FGF8b directly reprogrammed embryonic mouse fibroblasts to induced neuronal (iN) cells: pan-neuronal cells and dopaminergic (DA) neurons under our systematic cell culture conditions. Reprogrammed cells showed the morphological properties of neuronal cells. Additionally, cells were analyzed using various markers, including Tuj1 and Map2 for neuronal cells and Lmx1a, Th, Aadc and Vmat2 for DA neurons in our immunostaining and reverse transcription (RT)-PCR experiments. We found that a combination of transcription factors and neurotrophic factors could directly reprogram fibroblasts to neuronal cells including DA neurons. Various types of reprogrammed cells are promising cell sources for cell-based therapy of neurological disorders like Parkinson's disease and spinal cord injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。