Epithelial-to-mesenchymal transition induced by TGF-β1 is mediated by Blimp-1-dependent repression of BMP-5.

TGF-β1 诱导的上皮间质转化是由 Blimp-1 依赖性 BMP-5 抑制介导的

阅读:6
作者:Romagnoli Mathilde, Belguise Karine, Yu Ziyang, Wang Xiaobo, Landesman-Bollag Esther, Seldin David C, Chalbos Dany, Barillé-Nion Sophie, Jézéquel Pascal, Seldin Margaret L, Sonenshein Gail E
Induction of epithelial-to-mesenchymal transition (EMT) by TGF-β1 requires Ras signaling. We recently identified the transcriptional repressor Blimp-1 (PRDM1) as a downstream effector of the NF-κB, RelB/Bcl-2/Ras-driven pathway that promotes breast cancer cell migration. As the RelB/Blimp-1 pathway similarly required Ras signaling activation, we tested whether Blimp-1 plays a role in TGF-β1-mediated EMT. Here, TGF-β1 treatment of untransformed NMuMG mammary epithelial and MDA-MB-231 breast cancer cells was shown to induce Blimp-1 expression, which promoted an EMT signature and cell migration. TGFB1 and BLIMP1 RNA levels were correlated in patient breast tumors. BLIMP1 gene transcription was activated by TGF-β1 via a c-Raf (RAF1) to AP-1 pathway. Blimp-1 induced expression of the EMT master regulator Snail (SNAI1) via repressing BMP-5, which inhibited Snail expression upon TGF-β1 treatment. Interestingly, a similar cascade was observed during postnatal mouse mammary gland development. RelB expression was detected early in pregnancy followed progressively by Blimp-1 and then Snail; whereas, BMP-5 levels were high in nulliparous and regressing glands. Finally, lower BMP5 RNA levels were detected in patient breast tumors versus normal tissues, and correlated with cancer recurrence. Thus, the Ras effector Blimp-1 plays an essential role in TGF-β1-induced EMT via repression of BMP-5 in breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。