The effects of macrophages on cardiomyocyte calcium-handling function using in vitro culture models.

利用体外培养模型研究巨噬细胞对心肌细胞钙处理功能的影响

阅读:7
作者:Hitscherich Pamela G, Xie Lai-Hua, Del Re Dominic, Lee Eun Jung
Following myocardial infarction (MI), myocardial inflammation plays a crucial role in the pathogenesis of MI injury and macrophages are among the key cells activated during the initial phases of the host response regulating the healing process. While macrophages have emerged as attractive effectors in tissue injury and repair, the contribution of macrophages on cardiac cell function and survival is not fully understood due to complexity of the in vivo inflammatory microenvironment. Understanding the key cells involved and how they communicate with one another is of paramount importance for the development of effective clinical treatments. Here, novel in vitro myocardial inflammation models were developed to examine how both direct and indirect interactions with polarized macrophage subsets present in the post-MI microenvironment affect cardiomyocyte function. The indirect model using conditioned medium from polarized macrophage subsets allowed examination of the effects of macrophage-derived factors on stem cell-derived cardiomyocyte function for up to 3 days. The results from the indirect model demonstrated that pro-inflammatory macrophage-derived factors led to a significant downregulation of cardiac troponin T (cTnT) and sarcoplasmic/endoplasmic reticulum calcium ATPase (Serca2) gene expression. It also demonstrated that inhibition of macrophage-secreted matricellular protein, osteopontin (OPN), led to a significant decrease in cardiomyocyte store-operated calcium entry (SOCE). In the direct model, stem cell-derived cardiomyocytes were co-cultured with polarized macrophage subsets for up to 3 days. It was demonstrated that anti-inflammatory macrophages significantly increased cardiomyocyte Ca(2+) fractional release while macrophages independent of their subtypes led to significant downregulation of SOCE response in cardiomyocytes. This study describes simplified and controlled in vitro myocardial inflammation models, which allow examination of potential beneficial and deleterious effects of macrophages on cardiomyocytes and vise versa. This can lead to our improved understanding of the inflammatory microenvironment post-MI, otherwise difficult to directly investigate in vivo or by using currently available in vitro models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。