Because of the physiological and immunological similarities that exist between pigs and humans, porcine pluripotent cell lines have been identified as important candidates for preliminary studies on human disease as well as a source for generating transgenic animals. Therefore, the establishment and characterization of porcine embryonic stem cells (pESCs), along with the generation of stable transgenic cell lines, is essential. In this study, we attempted to efficiently introduce transgenes into Epiblast stem cell (EpiSC)-like pESCs. Consequently, a pluripotent cell line could be derived from a porcine-hatched blastocyst. Enhanced green fluorescent protein (EGFP) was successfully introduced into the cells via lentiviral vectors under various multiplicities of infection, with pluripotency and differentiation potential unaffected after transfection. However, EGFP expression gradually declined during extended culture. This silencing effect was recovered by in vitro differentiation and treatment with 5-azadeoxycytidine. This phenomenon was related to DNA methylation as determined by bisulfite sequencing. In conclusion, we were able to successfully derive EpiSC-like pESCs and introduce transgenes into these cells using lentiviral vectors. This cell line could potentially be used as a donor cell source for transgenic pigs and may be a useful tool for studies involving EpiSC-like pESCs as well as aid in the understanding of the epigenetic regulation of transgenes.
Epigenetic changes of lentiviral transgenes in porcine stem cells derived from embryonic origin.
源自胚胎的猪干细胞中慢病毒转基因的表观遗传变化
阅读:6
作者:Choi Kwang-Hwan, Park Jin-Kyu, Kim Hye-Sun, Uh Kyung-Jun, Son Dong-Chan, Lee Chang-Kyu
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2013 | 起止号: | 2013 Aug 19; 8(8):e72184 |
| doi: | 10.1371/journal.pone.0072184 | 种属: | Porcine、Viral |
| 研究方向: | 发育与干细胞、细胞生物学、表观遗传 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
