Recently, multiple neurotrophic/growth factors have been proposed to play an important role in the therapeutic action of antidepressants. In this study, we prepared astrocyte- and neuron-enriched cultures from the neonatal rat cortex, and examined the changes in neurotrophic/growth factor expression by antidepressant treatment using real-time PCR. Treatment with amitriptyline (a tricyclic antidepressant) significantly increased the expression of fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor, vascular endothelial growth factor and glial cell line-derived neurotrophic factor mRNA with a different time course in astrocyte cultures, but not in neuron-enriched cultures. Only the expression of FGF-2 was higher in astrocyte cultures than in neuron-enriched cultures. We focused on the FGF-2 production in astrocytes. Several different classes of antidepressants, but not non-antidepressants, also induced FGF-2 mRNA expression. Noradrenaline (NA) is known to induce FGF-2 expression in astrocyte cultures, as with antidepressants. Therefore, we also assessed the mechanism of NA-induced FGF-2 expression, in comparison to amitriptyline. NA increased the FGF-2 mRNA expression via α1 and β-adrenergic receptors; however, the amitriptyline-induced FGF-2 mRNA expression was not mediated via these adrenergic receptors. Furthermore, the amitriptyline-induced FGF-2 mRNA expression was completely blocked by cycloheximide (an inhibitor of protein synthesis), while the NA-induced FGF-2 mRNA was not. These data suggest that the regulation of FGF-2 mRNA expression by amitriptyline was distinct from that by NA. Taken together, antidepressant-stimulated astrocytes may therefore be important mediators that produce several neurotrophic/growth factors, especially FGF-2, through a monoamine-independent and a de novo protein synthesis-dependent mechanism.
Antidepressant acts on astrocytes leading to an increase in the expression of neurotrophic/growth factors: differential regulation of FGF-2 by noradrenaline.
抗抑郁药作用于星形胶质细胞,导致神经营养因子/生长因子的表达增加:去甲肾上腺素对 FGF-2 的差异性调节
阅读:4
作者:Kajitani Naoto, Hisaoka-Nakashima Kazue, Morioka Norimitsu, Okada-Tsuchioka Mami, Kaneko Masahiro, Kasai Miho, Shibasaki Chiyo, Nakata Yoshihiro, Takebayashi Minoru
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2012 | 起止号: | 2012;7(12):e51197 |
| doi: | 10.1371/journal.pone.0051197 | 研究方向: | 神经科学、细胞生物学 |
| 疾病类型: | 抑郁症 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
