ES cell-derived glial precursors contribute to remyelination in acutely demyelinated spinal cord lesions.

ES细胞衍生的神经胶质前体有助于急性脱髓鞘脊髓损伤的髓鞘再生

阅读:6
作者:Perez-Bouza Alberto, Glaser Tamara, Brüstle Oliver
Pluripotent embryonic stem (ES) cells have emerged as a powerful tool for disease modeling and neural regeneration. Transplantation studies in rodents indicate that ES cell-derived glial precursors (ESGPs) efficiently restore myelin in dysmyelinating mutants and chemically induced foci of myelin loss. Here we explore the myelination potential of ESGPs in an antibody/complement-induced demyelination model. Microinjection of an antibody to myelin oligodendrocyte glycoprotein (MOG) and complement was employed to generate circumscribed areas of demyelination in the adult rat spinal cord. ESGPs transplanted into 2-day-old lesions were found to survive and differentiate into both oligodendrocytes and astrocytes. The engrafted cells remained largely confined to the lesion site and showed no evidence of tumor formation up until 4 weeks after transplantation. Within areas of pronounced microglial activation and macrophage extravasation, engrafted ES cell-derived oligodendrocytes contacted and enwrapped host axons and alongside endogenous glia, contributed to the formation of new myelin sheaths. These findings demonstrate that ESGPs transplanted into acutely demyelinated lesions can contribute to myelin repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。