Dopamine 2 Receptor Signaling Controls the Daily Burst in Phagocytic Activity in the Mouse Retinal Pigment Epithelium

多巴胺 2 受体信号控制小鼠视网膜色素上皮细胞吞噬活性的每日爆发

阅读:7
作者:Varunika Goyal, Christopher DeVera, Virginie Laurent, Jana Sellers, Micah A Chrenek, David Hicks, Kenkichi Baba, P Michael Iuvone, Gianluca Tosini

Conclusions

Our data suggest that removal of D2R prevents the burst of phagocytosis and a related increase in the phosphorylation of FAK after light onset. The pathway analysis points toward a putative role of D2R in controlling integrin signaling, which is known to play an important role in the control of the daily burst of phagocytosis by the RPE. Our data also indicate that the absence of the burst of phagocytic activity in the early morning does not produce any apparent deleterious effect on the retina or RPE up to 1 year of age.

Methods

Here, we first investigated the impact of the removal of D2R on the daily peak of phagocytosis by RPE and then we analyzed the function and morphology of retina and RPE in the absence of D2R.

Purpose

A burst in phagocytosis of spent photoreceptor outer fragments by RPE is a rhythmic process occurring 1 to 2 hours after the onset of light. This phenomenon is considered crucial for the health of the photoreceptors and RPE. We have recently reported that dopamine, via dopamine 2 receptor (D2R), shifts the circadian rhythm in the RPE.

Results

D2R knockout (KO) mice do not show a daily burst of phagocytic activity after the onset of light. RNA sequencing revealed a total of 394 differentially expressed genes (DEGs) between ZT 23 and ZT 1 in the control mice, whereas in D2R KO mice, we detected 1054 DEGs. Pathway analysis of the gene expression data implicated integrin signaling to be one of the upregulated pathways in control but not in D2R KO mice. Consistent with the gene expression data, phosphorylation of focal adhesion kinase (FAK) did not increase significantly in KO mice at ZT 1. No difference in retinal thickness, visual function, or morphology of RPE cells was observed between wild-type (WT) and D2R KO mice at the age of 3 and 12 months. Conclusions: Our data suggest that removal of D2R prevents the burst of phagocytosis and a related increase in the phosphorylation of FAK after light onset. The pathway analysis points toward a putative role of D2R in controlling integrin signaling, which is known to play an important role in the control of the daily burst of phagocytosis by the RPE. Our data also indicate that the absence of the burst of phagocytic activity in the early morning does not produce any apparent deleterious effect on the retina or RPE up to 1 year of age.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。