RNA-binding protein Vg1RBP regulates terminal arbor formation but not long-range axon navigation in the developing visual system.

RNA结合蛋白Vg1RBP调节发育中视觉系统的末端树突形成,但不调节长程轴突导航

阅读:10
作者:Kalous Adrianna, Stake James I, Yisraeli Joel K, Holt Christine E
Local synthesis of β-actin is required for attractive turning responses to guidance cues of growth cones in vitro but its functional role in axon guidance in vivo is poorly understood. The transport and translation of β-actin mRNA is regulated by the RNA-binding protein, Vg1RBP (zipcode-binding protein-1). To examine whether Vg1RBP plays a role in axon navigation in vivo, we disrupted Vg1RBP function in embryonic Xenopus laevis retinal ganglion cells by expressing a dominant-negative Vg1RBP and by antisense morpholino knockdown. We found that attractive turning to a netrin-1 gradient in vitro was abolished in Vg1RBP-deficient axons but, surprisingly, the long-range navigation from the retina to the optic tectum was unaffected. Within the tectum, however, the branching and complexity of axon terminals were significantly reduced. High-resolution time-lapse imaging of axon terminals in vivo revealed that Vg1RBP-GFP-positive granules accumulate locally in the axon shaft immediately preceding the emergence a filopodial-like protrusion. Comparative analysis of branch dynamics showed that Vg1RBP-deficient axons extend far fewer filopodial-like protrusions than control axons and indicate that Vg1RBP promotes filopodial formation, an essential step in branch initiation. Our findings show that Vg1RBP is required for terminal arborization but not long-range axon navigation and suggest that Vg1RBP-regulated mRNA translation promotes synaptic complexity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。