Brain-derived neurotrophic factor contributes to activity-induced muscle pain in male but not female mice.

脑源性神经营养因子可导致雄性小鼠而非雌性小鼠出现活动诱发的肌肉疼痛

阅读:8
作者:Hayashi Kazuhiro, Lesnak Joseph B, Plumb Ashley N, Janowski Adam J, Smith Angela F, Hill Joslyn K, Sluka Kathleen A
Activity-induced muscle pain increases interleukin-1β (IL-1β) release from muscle macrophages and the development of hyperalgesia is prevented by blockade of IL-1β in muscle. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1β and mediates both inflammatory and neuropathic pain. Thus, we hypothesize that in activity-induced pain, fatigue metabolites combined with IL-1β activate sensory neurons to increase BDNF release, peripherally in muscle and centrally in the spinal dorsal horn, to produce hyperalgesia. We tested the effect of intrathecal or intramuscular injection of BDNF-Tropomyosin receptor kinase B (TrkB) inhibitors, ANA-12 or TrkB-Fc, on development of activity-induced pain. Both inhibitors prevented the hyperalgesia when given before or 24hr after induction of the model in male but not female mice. BDNF messenger ribonucleic acid (mRNA) and protein were significantly increased in dorsal root ganglion (DRG) 24hr after induction of the model in both male and female mice. Blockade of IL-1β in muscle had no effect on the increased BNDF mRNA observed in the activity-induced pain model, while IL-1β applied to cultured DRG significantly induced BDNF expression, suggesting IL-1β is sufficient but not necessary to induce BNDF. Thus, fatigue metabolites, combined with IL-1β, upregulate BDNF in primary DRG neurons in both male and female mice, but contribute to activity-induced pain only in males.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。