Evolution-inspired redesign of the LPS receptor caspase-4 into an interleukin-1β converting enzyme.

受进化启发,将 LPS 受体 caspase-4 重新设计为白细胞介素-1β 转化酶

阅读:8
作者:Devant Pascal, Cao Anh, Kagan Jonathan C
Innate immune signaling pathways comprise multiple proteins that promote inflammation. This multistep means of information transfer suggests that complexity is a prerequisite for pathway design. Herein, we test this hypothesis by studying caspases that regulate inflammasome-dependent inflammation. Several caspases differ in their ability to recognize bacterial LPS and cleave interleukin-1β (IL-1β). No caspase is known to contain both activities, yet distinct caspases with complementary activities bookend an LPS-induced pathway to IL-1β cleavage. Using caspase-1/4 hybrid proteins present in canines as a guide, we identified molecular determinants of IL-1β cleavage specificity within caspase-1. This knowledge enabled the redesign of human caspase-4 to operate as a one-protein signaling pathway, which intrinsically links LPS detection to IL-1β cleavage and release, independent of inflammasomes. We identified caspase-4 homologues in multiple carnivorans which display the activities of redesigned human caspase-4. These findings illustrate natural signaling pathway diversity and highlight how multistep innate immune pathways can be condensed into a single protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。