Chronic exposure to cerebrospinal fluid of multiple system atrophy in neuroblastoma and glioblastoma cells induces cytotoxicity via ER stress and autophagy activation.

神经母细胞瘤和胶质母细胞瘤细胞长期暴露于脑脊液中,可导致多系统萎缩,并通过内质网应激和自噬激活诱导细胞毒性

阅读:6
作者:Wang Xuejing, Ma Mingming, Teng Junfang, Zhang Jiewen, Zhou Shuang, Zhang Ying, Wu Erxi, Ding Xuebing
Oncogenesis and neurodegeneration share many common pathogenic pathways, involved in endoplastic reticulum (ER) stress, autophagy, DNA repair, and oxidative stress. However, mechanisms of cross-talking between oncogenesis and neurodegeneration are still unknown. Characterized by abnormal accumulation of α-synuclein (α-syn) aggregates in central nervous system (CNS), multiple system atrophy (MSA) is classified as α-synucleinopathy. Rapidly emerging evidence suggests that 'prion-like propagation' of α-syn aggregates in the regional spread of CNS leads to the progression of α-synucleinopathy. Whether cerebrospinal fluid (CSF) has deteriorating effects on neurogenic tumor cells and is involved in progression of α-synucleinopathy has not been explored. Here, we first show the cytotoxic effects of MSA-CSF on the neuroblastoma and glioblastoma cells and its underlying mechanism in vitro. Remarkably, MSA-CSF induced cytotoxicity via activating ER stress-associated apoptosis and autophagy in both SH-SY5Y and U251 cells. The result from in vivo systematic neuropathological analysis reveals that abnormally activated ER stress and autophagy were confined to substantia nigra and cerebellum in mouse CNS following MSA-CSF treatment. Specifically, dopamine neurons in substantia nigra and Purkinje cells in cerebellum cortex were degenerated in MSA-CSF-injected mice. Altogether, these findings demonstrate that MSA-CSF exerts cytotoxicities on nervous system neoplasms and accelerates the progression of synucleinopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。