CCR2 regulates the uptake of bone marrow-derived fibroblasts in renal fibrosis.

CCR2 调节肾纤维化中骨髓来源成纤维细胞的摄取

阅读:2
作者:Xia Yunfeng, Entman Mark L, Wang Yanlin
Recent studies have shown that bone marrow-derived fibroblasts contribute significantly to the pathogenesis of renal fibrosis. However, the molecular mechanisms underlying the recruitment of bone marrow-derived fibroblasts into the kidney are incompletely understood. Bone marrow-derived fibroblasts express the chemokine receptor--CCR2. In this study, we tested the hypothesis that CCR2 participates in the recruitment of fibroblasts into the kidney during the development of renal fibrosis. Bone marrow-derived collagen-expressing GFP⁺ fibroblasts were detected in the obstructed kidneys of chimeric mice transplanted with donor bone marrow from collagen α1(I)-GFP reporter mice. These bone marrow-derived fibroblasts expressed PDGFR-β and CCR2. CCR2 knockout mice accumulated significantly fewer bone marrow-derived fibroblast precursors expressing the hematopoietic marker-CD45 and the mesenchymal markers-PDGFR-β or procollagen I in the obstructed kidneys compared with wild-type mice. Furthermore, CCR2 knockout mice displayed fewer bone marrow-derived myofibroblasts and expressed less α-SMA or FSP-1 in the obstructed kidneys compared with wild-type mice. Consistent with these findings, genetic deletion of CCR2 inhibited total collagen deposition and suppressed expression of collagen I and fibronectin. Moreover, genetic deletion of CCR2 inhibits MCP-1 and CXCL16 gene expression associated with a reduction of inflammatory cytokine expression and macrophage infiltration, suggesting a linear interaction between two chemokines/ligand receptors in tubular epithelial cells. Taken together, our results demonstrate that CCR2 signaling plays an important role in the pathogenesis of renal fibrosis through regulation of bone marrow-derived fibroblasts. These data suggest that inhibition of CCR2 signaling could constitute a novel therapeutic approach for fibrotic kidney disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。