Reactive oxygen species (ROS) modulate intracellular signaling but are also responsible for neuronal damage in pathological states. Microglia, the resident CNS macrophages, are prominent sources of ROS through expression of the phagocyte oxidase which catalytic subunit Nox2 generates superoxide ion (O2(.-)). Here we show that microglia also express Nox1 and other components of nonphagocyte NADPH oxidases, including p22(phox), NOXO1, NOXA1, and Rac1/2. The subcellular distribution and functions of Nox1 were determined by blocking Nox activity with diphenylene iodonium or apocynin, and by silencing the Nox1 gene in microglia purified from wild-type (WT) or Nox2-KO mice. [Nox1-p22(phox)] dimers localized in intracellular compartments are recruited to phagosome membranes during microglial phagocytosis of zymosan, and Nox1 produces O2(.-) in zymosan-loaded phagosomes. In microglia activated with lipopolysaccharide (LPS), Nox1 produces O2(.-), which enhances cell expression of inducible nitric oxide synthase and secretion of interleukin-1beta. Comparisons of microglia purified from WT, Nox2-KO, or Nox1-KO mice indicate that both Nox1 and Nox2 are required to optimize microglial production of nitric oxide. By injecting LPS in the striatum of WT and Nox1-KO mice, we show that Nox1 also enhances microglial production of cytotoxic nitrite species and promotes loss of presynaptic proteins in striatal neurons. These results demonstrate the functional expression of Nox1 in resident CNS phagocytes, which can promote production of neurotoxic compounds during neuroinflammation. Our study also shows that Nox1- and Nox2-dependent oxidases play distinct roles in microglial activation and that Nox1 is a possible target for the treatment of neuroinflammatory states.
Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase.
nox1依赖性NADPH氧化酶促进小胶质细胞的神经毒性激活
阅读:5
作者:Chéret Cyril, Gervais Annie, Lelli Aurélia, Colin Catherine, Amar Lahouari, Ravassard Philippe, Mallet Jacques, Cumano Ana, Krause Karl-Heinz, Mallat Michel
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2008 | 起止号: | 2008 Nov 12; 28(46):12039-51 |
| doi: | 10.1523/JNEUROSCI.3568-08.2008 | 研究方向: | 神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
