N-actylcysteine inhibits diethyl phthalate-induced inflammation via JNK and STAT pathway in RAW264.7 macrophages.

N-乙酰半胱氨酸通过 JNK 和 STAT 通路抑制 RAW264.7 巨噬细胞中邻苯二甲酸二乙酯诱导的炎症

阅读:20
作者:Kim Jin Hee, Lee Jae Hoon, Koo Yoon Jung, Song Jong Wook
BACKGROUND: Phthalates are plasticizers that cause inflammation in several cell types and adversely affect the health of humans and animals. Nacetylcysteine (NAC) has been shown to exert antioxidant effects in various diseases. However, the effect of NAC on diethyl phthalate (DEP)-induced toxicity in macrophages has not yet been elucidated. In this study, we investigated the effect and underlying mechanisms of NAC on DEP-induced inflammation in RAW264.7 macrophages. RAW264.7 macrophages were pretreated with NAC for 2 h followed by exposure to DEP. We investigated the effect of NAC on NO, reactive oxygen species (ROS), prostaglandin E2 (PGE2), and glutathione (GSH) levels following DEP exposure. In addition, pathway-related genes including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), mitogen-activated protein kinase (MAPK), and signal transducer and activator of transcription (STAT) were evaluated using western blot. RESULTS: Treatment with 100 and 300 µM DEHP, DBP, and DEP significantly increased the protein levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) compared with those in the control group. However, NAC pretreatment downregulated the levels of NO, PGE2, and ROS, elevated GSH levels, and suppressed the mRNA levels of inflammatory cytokines such as interleukin (IL)-1β, IL-6, COX-2, and iNOS compared with those in the DEP-treated group. In addition, NAC significantly reduced the levels of p-JNK and p-STAT1/3 in RAW264.7 macrophages treated with DEP. CONCLUSIONS: NAC pretreatment inhibits DEP-induced inflammation via the MAPK/JNK and STAT1/3 pathways in macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。