Resveratrol Inhibits Proliferation and Differentiation of Porcine Preadipocytes by a Novel LincRNA-ROFM/miR-133b/AdipoQ Pathway

白藜芦醇通过新型 LincRNA-ROFM/miR-133b/AdipoQ 通路抑制猪前脂肪细胞增殖和分化

阅读:5
作者:Qinyang Jiang, Sanbao Zhang, Xiaotong Gao, Yan Hu, Yu Zhang, Yujian Shen, Yuhang Jiang, Yanna Huang

Abstract

Resveratrol (RES) has a wide range of biological and pharmacological activities with various health benefits for humans as a food additive. In animal production, RES has been considered a potential functional feed additive for producing high-quality pork. Long noncoding RNAs (lncRNAs) have emerged as essential regulators of fat metabolism, and phytochemicals can regulate fat metabolism through lncRNA. However, it is unclear whether RES can improve back-fat thickness by regulating lncRNA. In this study, we identified a novel lncRNA, which was named a long intergenic non-protein coding RNA, a regulator of fat metabolism (LincRNA-ROFM), from our previous lncRNA sequencing data. LincRNA-ROFM can inhibit adipocyte proliferation and differentiation. In-depth analyses showed that LincRNA-ROFM acts as a molecular sponge for miR-133b, and adiponectin (AdipoQ) is a direct target of miR-133b in porcine preadipocytes. In addition, the expression of LincRNA-ROFM was positively correlated with AdipoQ. RES can promote the expression of LincRNA-ROFM by PPARα and C/EBPα. Altogether, our research showed that LincRNA-ROFM acts as a ceRNA to sequester miR-133b and is upregulated by RES, leading to heightened AdipoQ expression, and thus decreased adipocyte proliferation and differentiation, which reduces back-fat thickness of pigs. Taken together, the RES/LincRNA-ROFM/miR-133b/AdipoQ regulatory network preliminarily explains the mechanism of action of RES in inhibiting fat deposition, which provides new insight into the downstream mechanism of RES inhibition of fat deposits by regulating the lncRNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。