Light is an important signal source in nature, which regulates the physiological cycle, morphogenetic pathways, and secondary metabolites of fungi. As an external pressure on Aspergillus niger, light signaling transmits stress signals into the cell via the mitogen-activated protein kinase (MAPK) signaling pathway. Studying the effect of light on the biofilm of A. niger will provide a theoretical basis for light in the cultivation of filamentous fungi and industrial applications. Here, the characterization of A. niger biofilm under different light intensities confirmed the effects of light signaling. Our results indicated that A. niger intensely accumulated protective mycelial melanin under light illumination. We also discovered that the RlmA transcription factor in the MAPK signaling pathway is activated by light signaling to promote the synthesis of melanin, chitin, and other exopolysaccharides. However, the importance of melanin to A. niger biofilm is rarely reported; therefore, we knocked out key genes of the melanin biosynthetic pathway-Abr1 and Ayg1 Changes in hydrophobicity and electrostatic forces resulted in the decrease of biofilm caused by the decrease of melanin in mutants.IMPORTANCE As an important industrial filamentous fungus, Aspergillus niger can perceive light. The link between light signaling and A. niger biofilm is worthy of further study since reports are lacking in this area. This study found that light signaling promotes biofilm production in A. niger, wherein melanin plays an important role. It was further discovered that the RlmA transcription factor in the mitogen-activated protein kinase (MAPK) signaling pathway was mediated by light signaling to promote the synthesis of melanin and extracellular polysaccharides. These findings set the stage for light signal regulation of biofilm in filamentous fungi and provide a theoretical basis for the development of a new light-controlled biofilm method to improve biofilm-based industrial fermentation.
Light Signaling Regulates Aspergillus niger Biofilm Formation by Affecting Melanin and Extracellular Polysaccharide Biosynthesis.
光信号通过影响黑色素和细胞外多糖的生物合成来调节黑曲霉生物膜的形成
阅读:3
作者:Sun Wenjun, Yu Ying, Chen Jiao, Yu Bin, Chen Tianpeng, Ying Hanjie, Zhou Shengmin, Ouyang Pingkai, Liu Dong, Chen Yong
| 期刊: | mBio | 影响因子: | 4.700 |
| 时间: | 2021 | 起止号: | 2021 Feb 16; 12(1):e03434-20 |
| doi: | 10.1128/mBio.03434-20 | 研究方向: | 信号转导、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
