Recent studies have described bone as an endocrine organ regulating glucose metabolism, with insulin signaling regulating osteocalcin secretion and osteocalcin regulating β cell function. We have previously demonstrated increased bone expression of TXNIP in patients with endogenous Cushing's syndrome (CS), and we hypothesized that TXNIP could contribute to the dysregulated glucose metabolism in CS. We studied 33 CS patients and 29 matched controls, with bone biopsies from nine patients, before and after surgical treatment. In vitro, the effect of silencing TXNIP (siTXNIP) in osteoblasts, including its effect on human islet cells, was examined. Our major findings were: (i) The high mRNA levels of TXNIP in bone from CS patients were significantly associated with high levels of glucose and insulin, increased insulin resistance, and decreased insulin sensitivity in these patients. (ii) Silencing TXNIP in osteoblasts enhanced their OC response to insulin and glucose and down-regulated interleukin (IL)-8 levels in these cells. (iii) Conditional media from siTXNIP-treated osteoblasts promoted insulin content and anti-inflammatory responses in human islet cells. We recently demonstrated that the thioredoxin/TXNIP axis may mediate some detrimental effects of glucocorticoid excess on bone tissue in CS. Here we show that alterations in this axis also may affect glucose metabolism in these patients.
Thioredoxin interacting protein is a potential regulator of glucose and energy homeostasis in endogenous Cushing's syndrome.
硫氧还蛋白相互作用蛋白是内源性库欣综合征中葡萄糖和能量稳态的潜在调节因子
阅读:8
作者:Lekva Tove, Bollerslev Jens, Sahraoui Afaf, Scholz Hanne, Bøyum Hege, Evang Johan Arild, Godang Kristin, Aukrust PÃ¥l, Ueland Thor
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2013 | 起止号: | 2013 May 17; 8(5):e64247 |
| doi: | 10.1371/journal.pone.0064247 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
