Toll-like receptor 4 mediates the inflammatory responses and matrix protein remodeling in remote non-ischemic myocardium in a mouse model of myocardial ischemia and reperfusion.

在小鼠心肌缺血再灌注模型中,Toll 样受体 4 介导远端非缺血心肌的炎症反应和基质蛋白重塑

阅读:5
作者:Zhai Yufeng, Ao Lihua, Cleveland Joseph C, Zeng Qingchun, Reece T Brett, Fullerton David A, Meng Xianzhong
The signaling mechanism that mediates inflammatory responses in remote non-ischemic myocardium following regional ischemia/reperfusion (I/R) remains incompletely understood. Myocardial Toll-like receptor 4 (TLR4) can be activated by multiple proteins released from injured cells and plays a role in myocardial inflammation and injury expansion. We tested the hypothesis that TLR4 occupies an important role in mediating the inflammatory responses and matrix protein remodeling in the remote non-ischemic myocardium following regional I/R injury. METHODS AND RESULTS: TLR4-defective (C3H/HeJ) and TLR4-competent (C3H/HeN) mice were subjected to coronary artery ligation (30 min) and reperfusion for 1, 3, 7 or 14 days. In TLR4-competent mice, levels of monocyte chemoattractant protein -1 (MCP-1), keratinocyte chemoattractant (KC), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) were elevated in the remote non-ischemic myocardium at day 1, 3, and 7 of reperfusion. Levels of collagen I, collagen IV, matrix metalloproteinase (MMP) 2 and MMP 9 were increased in the remote non-ischemic myocardium at day 7 and 14 of reperfusion. MMP 2 and MMP 9 activities were also increased. TLR4 deficiency resulted in a moderate reduction in myocardial infarct size. However, it markedly downgraded the changes in the levels of chemokines, adhesion molecules and matrix proteins in the remote non-ischemic myocardium. Further, left ventricular function at day 14 was significantly improved in TLR4-defective mice. In conclusion, TLR4 mediates the inflammatory responses and matrix protein remodeling in the remote non-ischemic myocardium following regional myocardial I/R injury and contributes to the mechanism of adverse cardiac remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。