Impact of the NGF maturation and degradation pathway on the cortical cholinergic system phenotype.

NGF成熟和降解途径对皮质胆碱能系统表型的影响

阅读:4
作者:Allard Simon, Leon Wanda C, Pakavathkumar Prateep, Bruno Martin A, Ribeiro-da-Silva Alfredo, Cuello A Claudio
Cortical cholinergic atrophy plays a significant role in the cognitive loss seen with aging and in Alzheimer's disease (AD), but the mechanisms leading to it remain unresolved. Nerve growth factor (NGF) is the neurotrophin responsible for the phenotypic maintenance of basal forebrain cholinergic neurons in the mature and fully differentiated CNS. In consequence, its implication in cholinergic atrophy has been suspected; however, no mechanistic explanation has been provided. We have previously shown that the precursor of NGF (proNGF) is cleaved extracellularly by plasmin to form mature NGF (mNGF) and that mNGF is degraded by matrix metalloproteinase 9. Using cognitive-behavioral tests, Western blotting, and confocal and electron microscopy, this study demonstrates that a pharmacologically induced chronic failure in extracellular NGF maturation leads to a reduction in mNGF levels, proNGF accumulation, cholinergic degeneration, and cognitive impairment in rats. It also shows that inhibiting NGF degradation increases endogenous levels of the mature neurotrophin and increases the density of cortical cholinergic boutons. Together, the data point to a mechanism explaining cholinergic loss in neurodegenerative conditions such as AD and provide a potential therapeutic target for the protection or restoration of this CNS transmitter system in aging and AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。