At present, effective drug for treatment of neuropathic pain is still lacking. Recent studies have shown that the ligands of translocator protein (TSPO, 18 kDa), a peripheral receptor for benzodiazepine, modulate inflammatory pain. Here, we report that TSPO was upregulated in astrocytes and microglia in the ipsilateral spinal dorsal horn of rats following L5 spinal nerve ligation (L5 SNL), lasting until the vanishing of the behavioral signs of neuropathic pain (â¼50 d). Importantly, a single intrathecal injection of specific TSPO agonists Ro5-4864 or FGIN-1-27 at 7 and 21 d after L5 SNL depressed the established mechanical allodynia and thermal hyperalgesia dramatically, and the effect was abolished by pretreatment with AMG, a neurosteroid synthesis inhibitor. Mechanically, Ro5-4864 substantially inhibited spinal astrocytes but not microglia, and reduced the production of tumor necrosis factor-α (TNF-α) in vivo and in vitro. The anti-neuroinflammatory effect was also prevented by AMG. Interestingly, TSPO expression returned to control levels or decreased substantially, when neuropathic pain healed naturally or was reversed by Ro5-4864, suggesting that the role of TSPO upregulation might be to promote recovery from the neurological disorder. Finally, the neuropathic pain and the upregulation of TSPO by L5 SNL were prevented by pharmacological blockage of Toll-like receptor 4 (TLR4). These data suggested that TSPO might be a novel therapeutic target for the treatment of neuropathic pain.
The upregulation of translocator protein (18 kDa) promotes recovery from neuropathic pain in rats.
转位蛋白(18 kDa)的上调促进大鼠神经性疼痛的恢复
阅读:5
作者:Wei Xu-Hong, Wei Xiao, Chen Feng-Ying, Zang Ying, Xin Wen-Jun, Pang Rui-Ping, Chen Yuan, Wang Jun, Li Yong-Yong, Shen Kai-Feng, Zhou Li-Jun, Liu Xian-Guo
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2013 | 起止号: | 2013 Jan 23; 33(4):1540-51 |
| doi: | 10.1523/JNEUROSCI.0324-12.2013 | 种属: | Rat |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
