Assessment of gastrointestinal function and enteric nervous system changes over time in the A53T mouse model of Parkinson's disease.

对帕金森病 A53T 小鼠模型的胃肠道功能和肠神经系统随时间的变化进行评估

阅读:5
作者:Han Myat Noe, Di Natale Madeleine R, Lei Enie, Furness John B, Finkelstein David I, Hao Marlene M, Diwakarla Shanti, McQuade Rachel M
Gastrointestinal (GI) dysfunctions, including constipation and delayed stomach emptying, are prevalent and debilitating non-motor symptoms of Parkinson's disease (PD). These symptoms have been associated with damage in the enteric nervous system (ENS) and the accumulation of pathogenic alpha-synuclein (α-Syn) within the GI tract. While motor deficits and dopaminergic neuron loss in the central nervous system (CNS) of the A53T mouse model are well-characterised, the temporal relationship between GI dysfunction, ENS pathology, and motor symptoms remains unclear. This study aimed to investigate functional alterations in the GI tract at the early stages of the disease, before the appearance of motor deficits, both in vivo and ex vivo. Early colonic motility deficits observed in A53T mice, measured via bead expulsion, preceded motor impairments emerged at 36 weeks. Although whole-gut transit remained unchanged, reduced faecal output was concurrent with marked colonic dysmotility at 36 weeks. Despite a lack of significant neuronal loss, a greater number of enteric neurons in A53T mice showed signs of neuronal hypertrophy and increased nuclear translocation of HuC/D proteins indicative of neuronal stress at 12 and 36 weeks. Calcium imaging revealed differential enteric neuron activity, characterised by exaggerated calcium transients at 12 weeks that normalized by 36 weeks. Furthermore, a reduction in enteric glial populations was observed as early as 12 weeks in both the ileum and colon of A53T mice. These findings provide compelling evidence that ENS pathology, including neuronal stress, disrupted calcium signalling, and glial cell loss, precedes the onset of motor symptoms and may contribute to early GI dysfunction in PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。