Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak.

钙瞬变的双相衰减是由于肌浆网钙泄漏增加所致

阅读:5
作者:Sankaranarayanan Rajiv, Li Yatong, Greensmith David J, Eisner David A, Venetucci Luigi
Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay. In the presence of β-adrenergic stimulation, RyR-mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase. Two forms of Ca leak have been studied, Ca-sensitising (induced by caffeine) and non-sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient. Only Ca-sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine. Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca-sensitising and non-sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca(2+)]i with fluo-3 in voltage-clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non-sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca(2+)]i , increased diastolic [Ca(2+)]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l(-1)) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the biphasic decay was replaced by slow decay. We conclude that, in the presence of adrenergic stimulation, Ca leak can produce biphasic decay; the slow phase results from the leak opposing Ca uptake by SERCA. The degree of leak determines whether decay of Ca waves, biphasic or monophasic, occurs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。